An Embarrassingly Parallel Mixture of GFlowNets

Vincent Quirion Moksh Jain Emmanuel Bengio Jason Hartford
Université de Montréal ~ Université de Montréal Recursion Recursion

Yoshua Bengio
Université de Montréal

Abstract

Generative flow networks (GFlowNets) are a powerful class of methods for sam-
pling from a distribution defined by an energy function. We develop an embarrass-
ingly parallel method to parallelize GFlowNets across a large number of compute
nodes by using clustering to partition the space of terminal states, and then training
a mixture of GFlowNets in parallel, each on a distinct part. We leverage the fact
that, once trained, GFlowNets give an estimate of the normalizing constant. This
lets us draw a sample from the mixture, by first selecting a GFlowNet with probabil-
ity proportional to its estimated normalizing constant and then running the selected
GFlowNet’s policy to draw a sample. We show that this simple procedure produces
(asymptotically) unbiased samples from the target distribution, and evaluate the
procedure on a synthetic problem and a molecule generation problem. Empirically,
we found that the mixture converges to distributions that produce more diverse
solutions than a single GFlowNet trained with an equivalent amount of compute,
and because of the benefits of parallelism, we were able to train the mixture with a
significant saving in wall-clock time.

1 Introduction

Will be in final paper

2 Background

2.1 Generative Flow Networks

Consider a directed acyclic graph G = (S, A), with state space S and action space A (space of
transitions between two states s; — s;11). Let so € S be the initial state, the unique state with no
incoming edges, and X C S be a set of terminating states (states without outgoing edges) representing
objects. Given an unnormalized, nontrivial and nonnegative reward function R : X — R>(over
the set of terminating states, the goal of a GFlowNet model is to learn a stochastic generative policy
m(a¢|s:) that samples objects © € X such that P, (z) < R(x). A GFlowNet constructs an object by
following a sequence of transitions from the initial state to a terminating state (complete trajectory)
T = (89 = $1 — ... = 8), Where 7 € T, the set of all possible complete trajectories.

As in[Bengio et al|[2021]], we define a trajectory flow F' : 7 — R, from which we derive the state
flow F(s) and edge flow F'(s; — S¢11):

F(s)=Y_F(r), Flss—si1)= Y F(7). 4}

T3S TOSt—>St+1

Preprint. Under review.

A nontrivial (not identically zero) trajectory flow F' induces a probability P over the set of complete
trajectories (Malkin et al.|[2022]):

P(r) = F(ZT), Z=F(s0)=Y F(r)=Y F(x). @)

TET zeX

Hence, we define the corresponding forward policy Pg(s:+1|s:) and backward policy P (s¢|s¢+1):
F(st — St41) F(st — St41)
F(st) F(st41)

The trajectory flow also brings about action distributions Pr(—|s) over the children of each nonter-
minal state s, which allow for the factorization of P as

Pr(siy1]s) = 3

, Pp(st|si41) =

P(r=(sg— 81— ... = 8p)) H (st]st—1) “

Correspondingly, each noninitial state s has a distribution Pg(—|s) over its parents such that for each
terminal state x,

P(r=(s90 =81 = ... = 8p)|sp =) :HP St—1]|st). (5)
t=1

Intuitively, these flow values can be thought of as the amount of water flowing through the edges
representing transitions (like pipes) and the nodes representing states (like tees, connecting pipes)
(Malkin et al.|[2022]), with R(z) being the amount of water that flows out of a terminal state x.

Given a space of objects A" and a nontrivial non negative reward function R : X — R, the goal of
a GFlowNet is to learn a stochastic generative policy 7 that samples objects € X proportionally to
R(x), that is, Pr(x) o< P(x). Consider a directed acyclic graph (DAG) G = (S, A) with state space
S and action space A. Let s € S be the initial (source) state, the only state with no incoming edges

2.2 Trajectory balance

When training with trajectory balance (Malkin et al.|[2022])), the de facto learning algorithm for
GFlowNets, the model learns three estimators Pr, Pg, and Z.
(Explain more for final paper?)

3 Mixture of GFlowNets

Consider a standard GFlowNet setting, where there is some terminal state space X, from which
we want to sample objects proportionally to a reward function R : X — R>. Using a standard
GFlowNet, we can train a policy 7 for which P, (z) = %, e X.

We propose to make the problem of learning a GFlowNet policy 7 embarrassingly parallel by training
a mixture of completely independent subordinate policies {1, 7o, ..., 7 }, each targeting a specific
part of the space of terminal states X

Training the mixture Let F,(X, k) be a partition function that partitions X into disjoints subsets
A; such that X = U;cz X for some index set Z = {1,2,...,k},and X; N X; = (forall 4,5 € Z.
Given such a partition, we can define alternate reward functions R;(z) = R(x)1(x € X;) and use
them to train k separate policies {1, 72, ..., 7 } with trajectory balance such that, at convergence,

R(x)1(zxeX;

A potential problem of using reward functions defined as such is they can be rather sparse, which
makes it difficult for a subordinate policy 7; to converge. To circumvent this problem, we can include
in each batch trajectories that lead to off-policy samples that we know are in &; and for which
Rl(a:) > 0.

"To simplify notation, we overload the reward function to define a measure, R(X) := >, R(z'), such

_ R(=)
that P, = R(%) -

Sampling from the mixture First, we use the normalizing constants {77, Zs, ..., Z; } learned
by the subordinated policies during their training with trajectory balance to obtain approximations
of R(X;) = Z; and R(X) =~), 7 Z;. To sample from the mixed policy 7, we sample from its
subordinate policies {1, 72, ..., i } proportionally to their estimated R(X;), such that P, (z) =

R(X; Ri(x R(x ...
Y iex(R((X)) X R(ga,))) = R(IX) Yier R(x) = R((X)) when the subsets are disjoints.

The complete training and sampling procedures are depicted in Algorithm [T}

Algorithm 1 Mixture of GFlowNets.

1: Use the partitioning function F,(X, k) to split the space of terminal states X into k disjoint
subsets { X7, As, ..., X }.

2: // Train the k subordinate policies in parallel
3: fori € Z ={1,2,...,k}, in parallel do
4 Define an alternate reward function R;(x) = R(z)1(z € X;)
5: Initialize the subordinate forward and backward policies Pr;, Pp;, and learnable subordinate
normalizing constant Z;.
6: for each training step ¢t = 1 to 7" do
7: Collect a training batch of B x (1—off_policy_ratio) trajectories based on the subordinate
forward policy Pr;
8: Compute the reward R;(x) for each on-policy samples in the batch
9: Add to the training batch B x (off_policy_ratio) trajectories that lead to samples for
which R;(z) is known and R;(z) > 0
10: Update the subordinate GFlowNet model according to the trajectory balance loss
11: end for
12: end for

13: // Sampling from the mixed policy
14: Compute the sum of the subordinate normalizing constants), Z;
15: for eachi =1to N do
16: Choose a subordinate policy 7; from {71, 72, ..., 7 } at random with probability
Z; ~ R(X:)
Ziez Zi =~ R(X)
17: Sample from 7; as with a standard GFlowNet
18: end for

4 Experiments

4.1 Hypergrid environment

4.1.1 Setup

We first study the performances of the Mixture method in the param-
eterized hypergrid environment introduced in ?. In this environment,
the objects sampled are cells of a D-dimensional hypercubic grid of] u
height H. The agent starts at coordinate z = (0,0, ...,0), and can
move around the grid only by taking action a;, which increases coor- =
dinate ¢ by 1 (actions that would increase ¢ past H — 1 are masked). A =
trajectory ends once the agent takes the stop action. The environment’s
reward function has a mode near each corner of the hypergrid, 2”
in total, which are surrounded by plateaux of moderate reward and
separated by troughs of base reward R, (Figure[I). As Ry decreases, *7——1 %+ % = =
exploration in the environment becomes harder.

Figure 1: Target distribution

The baseline results were computed with an open source implementa- of a 32x32 hypergrid

tion of GFlowNets in the hypergricﬂ which we then extended with an

*https://github.com/saleml/gfn

implementation of the mixture method to evaluate its performances in
the environment.

Optimal partitioning We define an optimal partition as a partition for which each subset of the
space of terminal state contains an equal amount of probability mass, i.e., R(X;) ~ R(Xj), for
all 7,7 € Z. Optimal partitions are desirable since they allow to not have to rely on the learned
subordinate normalizing constants during the sampling process. In fact, given a mixed policy 7 of
subordinate policies trained on parts of an optimal partition, we can sample from 7 by uniformly
sampling one of its suboordinate policies, and sampling from it. For every configuration of the
hypergrid (D, H, ..., Ry, ...), we can define an optimal (perfect) partition of 2° parts, such that each
part ¢ contains a single mode m and the points for which m is the nearest mode. We include these
results since an improved version of the method could include learning an optimal partition over
the course of training, which would lead to an asymptotically perfect partition of the state space.

Random partitioning Since knowing an optimal partition of X a
priori is impossible for most real-world environments and efficiently
learning an optimal partition is still out of reach, we also test the
method with a random partition function. Assume we have a feature
vector, x, that describes each state in R%; we project each feature
vector onto the d-dimensional unit sphere by normalizing the feature,
Z = x/|z|, and then we randomly partition the sphere into k classes
with a randomly initialized linear classifier with bias term equal to the
mean so that the decision boundaries are through the center (Figure [2)).

Figure 2: Example of a ran-

Experimental details We run the simulations in small (H = 8), dom partition of a 32x32 hy-
medium (H = 16) and large (H = 32) hypergrids of 2 and 3 dimen- pergrid

sions. We test on both the easy (Ry = 0.1) and harder (2y = 0.0001)

variants of these grids. For each configuration (D, H, ..., Ry, ...), we

evaluate a standard GFlowNet (?) as a baseline, a GFlowNet mixture

with a perfect partition of 22 parts, and GFlowNet mixture with a random partition of 27 parts. We
conduct each experiment using a random partition with 10 different seeds (which leads to 10 different
partitions).

4.1.2 Results

(More experiments will be in the final paper, and the plots will be matplotlib plots that are easier to
read)

The results of our experiments in the easy variant of a 32x32 grid (Figure[3) show that in a simple
environment where a standard GFlowNet already performs well, a mixture of GFlowNet converges
to a distribution that is almost as close to the target as a standard GFlowNet. Furthermore, results
from the experiment in the hard variant of a 32x32 grid show that in environments where a standard
GFlowNet struggles to find all the modes because the reward function is too sparse, using a mixture
that isolate each mode into their own subset can help converge to more diverse solutions.

5 Molecule generation

5.1 Setup

We then evaluate the effectiveness of our method in a larger-scale task, fragment-based (Kumar et al.
[2012]) molecule generation. As introduced in|Bengio et al.| [2021]], the task is to generate molecules
by linking molecule fragments to form a junction tree (Jin et al.| [2020]). This is a challenging
envrionment, with about 1016 states. The reward function is obtained via the pretrained proxy used
in ?, that predicts the binding energy of a molecule to the sEH protein. We extend an open source
implementation of the environment’| This implementation is a slightly different from the one used
in |[Bengio et al.| [2021]]. At each step, the agent has only 4 actions to choose from (compared to
100-2000 in the original implementation). However, put together these actions are approximately

*https://github.com/recursionpharma/gflownet

11_dist

Figure 3: Evolution of L, distance between the
learned distribution and the target distribution in

u_dist

Figure 4: Evolution of L; distance between the
learned distribution and the target distribution in

the hard variant of a 32x32 grid. In blue, a mixture
with a perfect partition, in red, a mixture with a
random partition, with minimum and maximum
values obtained over 10 random seeds, and in
orange, a standard GFlowNet.

the easy variant of a 32x32 grid. In blue, a mixture
with a perfect partition, in orange, a mixture with
a random partition, with minimum and maximum
values obtained over 10 random seeds, and in red,
a standard GFlowNet.

— Standard GFlowNet
Mixture of 6 separate policies
—— Mixture of 12 separate policie
—— Mixture of 25 separate policies
—— Mixture of 50 separate policies
—— Standard GFlowNet with batch size of 2048

0.60 1

—— standard GFlowNet
Mixture of & separate policies
—— Mixture of 12 separate policie
—— Mixture of 25 separate policies
—— Mixture of 50 separate policies
— Single GFlowNet with batch size of 2048

0.45 1

Mean reward of top 1k rewards
Mean Tanimoto similarity of the top 1k molecules

6000 8000 10000 12000 14000

Step

0 2000 4000

6000 8000 10000 12000 14000

step

él ZDIGO 40'00
Figure 6: volution of the mean Tanimoto similar-
ity of the top 1000 molecules generated through-
out training

Figure 5: Evolution of the mean reward of the top
1000 molecules generated throughout training

equivalent to the ones in [Bengio et al.|[2021]]’s implementation, so we’re able to generate more or
less the same molecules, but with longer trajectories.

Experimental details We experimented with mixtures of 6, 12, 25 and 50 subordinate policies,
each with a batch size of 64, and an off-policy ratio of 25% to help them converge. We also tested
two baselines, a standard GFlowNet with a batch size of 64, and another standard GFlowNet with
a batch size of 2048. Standard GFlowNets had an off-policy ratio of 0%. Policies were trained for
13500 steps.

5.2 Results

The results (Figures [5]and[6) show that compared to a standard GFlowNet with similar batch size, a
mixture of GFlowNets generates better and more diverse molecules, and that this advantage scales
with the amount of subpolicies. Also, we see that compared to a standard GFlowNet that is given
about as much computing resources, a mixture generates top molecules that are more diverse, even
though their average reward is a little lower.

References

E. Bengio, M. Jain, M. Korablyov, D. Precup, and Y. Bengio. Flow network based generative
models for non-iterative diverse candidate generation. In Neural Information Processing Systems
(NeurlIPS), 2021.

W. Jin, R. Barzilay, and T. Jaakkola. Chapter 11. Junction Tree Variational Autoencoder for
Molecular Graph Generation, pages 228-249. 11 2020. ISBN 978-1-78801-547-9. doi: 10.1039/
9781788016841-00228.

A. Kumar, A. Voet, and K. Zhang. Fragment based drug design: From experimental to computational
approaches. Current medicinal chemistry, 19, 08 2012. doi: 10.2174/092986712803530467.

N. Malkin, M. Jain, E. Bengio, C. Sun, and Y. Bengio. Trajectory balance: Improved credit assignment
in gflownets. In Neural Information Processing Systems (NeurIPS), 2022.

	Introduction
	Background
	Generative Flow Networks
	Trajectory balance

	Mixture of GFlowNets
	Experiments
	Hypergrid environment
	Setup
	Results

	Molecule generation
	Setup
	Results

